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VARIATIONAL METHOD OF INVESTIGATION OF THREE-DIMENSIONAL MIXED PROBLEMS 
OF A PLANE CUT IN AN ELASTIC MEDIUM IN THE PRESENCE OF SLIP 

AND ADHESION OF ITS SURFACES* 

R.V. GQL'DSHTEIN and A.A. SPECTOR 

A general three-dimensional static problem concerning an arbitrary crack occupying 
a plane region in an infinite elastic medium is considered. It is assumed that the 
developxsent of the crack occurs under the combined action of tenson, compression, 
and shear loads in relation to the plane of crack , and is accompanied by the forma- 
tion of regions, where its surfaces come into contact. In unknown beforehand zones 
of Contactthereisafriction with the coefficient depending on normal pressure and 
the magnitude of relative tangential displacement of the surfaces, Regions of local 
adhesion and slippage may be formed. An equivalent variational statement of the 
input boundary value problem is given. This problem is formulated in the form of 
systems of equalities and inequalities as the problem of minimization of uneven non- 
quadratic functionals dependent on jumps of displacements in the region of the 
crack. Conditions of existence and uniqueness of solution in the Sobolev- 
Slobodetskii space of fractional order are indicated. Certain properties of solu- 
tions are established and, also, the qualitative results of its integral character- 
istics dependence on the form of the crack and the parameters of the law of fric- 
tion. The variational formulation of the problem obtained here allows to construct 
its numerical solution using methods of mathematical programming. 

Problems of cracks with partly contacting surfaces without friction were considered in 
the axisymmetric case /l/ and in the general cases /2/. Plane problem on contacting surfaces 
of cracks with friction between them taken into account were studied in /3-6,'. Contact 
problems with conditions of friction similar to those considered below were studied in /7/. 
Solution of some contact problem with the dependence of the coefficient of friction on pres- 
sure was derived in /8/. 

1. Statement of the limit problem. The equilibrium of elastic space with a plane 
cut under the action of antisymmetric body and surface forces applied to the surfaces of the 
cut is considered. The surface of the cut on some (not known beforehand) part of the region 
taken by it, may contact one another, while on the remaining part they do not touch each other. 
The stresses on the open part of the cut coincide with specified surface loads; the stresses 
on each surface in the region of contact represent the sum of external load and the action 
of the other(eontacting) surface. The component normal to the surface of the cut pressure is 
of constant sign and related to its tangential component by the law of friction with condi- 
tions of slippage and adhesion. 

In the part of contact, where the relative displacement of the surfaces is absent (their 
adhesion takes place) the magnitude of the tangential component of interaction does not ex- 
ceed the product of the friction coefficient and pressure. The coefficient of friction in 
the region of adhesion depends on pressure at the considered point. In the remaining contact 
region of the surfaces of the cut (in the region of slippage), where a relative displacement 

exists, the tangent component of interaction of surfaces reaches the value of the product of 

the friction coefficient and pressure, and is directed along the relative displacement. The 
friction coefficient in the region of slippage depends on pressure and the magnitude of rela- 
tive displacement of surfaces at the considered point. The boundary between regions of slip- 
page and adhesion must be determined in the course of solving the problem. 

Let the cut occupy the region !,2 with boundary f in the plane Z= 0. We denote by Q(x, 
y, z) and R* (I, g) (R- = -R+ = r) the densities of the volume and surface loads. For the 

normal w and tangent uT of the components of displacement jump (taken from the lower surface), 
and for the normal oz and tangent t& surface stresses we, then, have the following conditions 

in the plane z= 0: 
throughout the whole region of the cut 
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0; Q r,, w = 0; 0; = r,, a, = r,, w < 0 (1.1) 

in the region of contact E, where w = 0 

Ias-rTI\<fip)P, IUTI’O 
(1.2) 

a, - rr = - If (PI + g (P, I UT I )IP UT/l UT I, lU,I#O (1.3) 

and outside region %!2 

w= Ill%] = 0 (1.4) 

Rare p = -(a, - rz) is the pressure and f(p), g (p, 1 u, I) are functions that specify the dep- 
endence of the friction coefficient on pressure and relative slippage of the surfaces. 

In formulating the problem with the process of loading of the space with the cut taken 
into account it is necessary, similarly to what was done in /9/ for contact prcblems, to sub- 
stitute the increment of u, corresponding to the increment of the loading parameter, on which 
depend the external loads Q and r, for the function ur. 

The unknown stress and displacement fields can be represented in the form of two fields, 
the first of which corresponds to the state of infinite space without a cut subjected to the 
action of volume forces Q, and the second to the state of the space with the cut D with anti- 
symmetric surface loads (R*& aJ. Here so (uzo, a,") are stresses at points of the planeZ= 0 

of the continuous space under the action of forces Q. Subsequently we shall define the 

fields appertaining to the second state taking stresses uoas known. Fortheunknownfieldswe re- 
tain the same notation a,, s,, W, ur- 

The projections of the displacement jump at points of the plane cut in the infinite med- 
ium (in the absence of volume loads) and the stresses at which the jump is realized are relat- 
ed by the known formulas IlO/ 

where F andF_' are operators of the direct and inverse Fourier transformations with parameter 

E (B. &,)r G is the shear modulus, and v is the Poisson coefficient of the medium. 
It is seen from the first of equalities (1.5) that the normal stresses at points of re- 

gion D are independent of the jump of tangent displacement. This allows us to separate the 
input problem (l.l)- (1.4) into two, which are solved successively. In the first problem the 
region of contact of surfaces E and the normal stresses at points of St are determined from 
conditions 

9 = 0; a, (2~) Q r, - in*', w = 0; ax-r,-a,O, to<0 (1.6) 

In the second, for known pressure in region E we obtain a% and Us (as well as regions of 
slippage and adhesion within the boundaries of E) from conditions 

I~~-rrt+s~I<f(P)p, lu,l=O 

u*-rT+u.P=- ~f(~)+~(~~I~~l)lpu~/l~~i~ I&l>0 in E 
a,=r, - *"inSi?fE 

(1.7) 

(1.8) 

The representationof unknownfieldsinthe formofasumoftwofields usedhereisvalidinspite 
of nonlinearity of input boundary conditions (l.l)- (1.3). Having found a,,4 from the solu- 
tion of problem (1.6), (1.7) and adding to them a,', uXo, we obtain functions that satisfy (1.1) 
- (1.31, since the passing to the auxilliary problem (1.6), (1.7) does not change the dis- 
placement jumps (in the continuous space under the action of forces Q they are absent) and 
pressures&hey represent the difference between the true and external normal stresses; in the 
auxilliary problem both these fields are altered in comparison with the input problem by the 
quantity - a,"). 

2. The variational problem of determination of pressure and the region of 
contact. Consider problem (1.6). We shall show that it leads totheequivalentvariational 
problem of minimizing the functional of potential energy of the set of kinematically admis- 
sible normal components of the displacement jump. 

meOl?em 2.1. The problem (1.6) with (T, - u,")EH_,,,(SZ) 
problem 

is equivalenttothevariational 
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2.1) 

v : w < 0, w E Hl) (9) 

where C%(W) is an operator specified by the first of formula (1.5) and H,, H,” are the Sobolev 
- Slobodetskii spaces /ll/. 

The proof is constructed by the scheme developed below for a more complicated case of 
determining tangential displacement jumps u,. 

In solving numerically the variational problem (2.1), a high effectiveness (*) was shown 
of the method which uses in the transition from a continuous problem to a discrete onebilinear 
splines and, then, the minimization by the method of projecting the gradient with automatic 
selection of the step /12/. 

3. The variation of problem for determining shear stresses and displace- 
ments. Let us consider nowtheproblem (1.7), (1.8) of finding u, (ux, uy). We shall show 
thatitis equivalent to the variational problem of minimization of the functional of potential 
energy(taking into account the works of friction forces) on the tangential components of the 
displacement jump uy. 

Theorem 3.1. Let 

IP&?(P* I"Tl) +Pf(P)1>0E~-v.(Q)~ 
I",1 

G(p,Iu,l)= 1 g(P,E.)dEEH;,(Q) 
0 

where g(z, y) is a continuous function of argument y 
for p known from the solution of (2.1) is equivalent 

(or” - ~4 E H-v, (Q) 

and g, (2, Y) > 0. Then problem (1.7),(1.8) 
to the following variational problem: 

- rzuz + ur”ul + P (f(p) I UT I + G (PI IQ I,,] dx dv] (3.1) 

The proof consists of passing to a variational inequality which reprsents some form of 
conditions of minimum of F,(uJ and then from the establishment of equivalence of that in- 
equality to the input boundary value problem. 

Let us prove at the beginning that the function uro minimiaes the functional F, (4 if 
and only if it Vu,= Hz/P(Q) satifies the variational inequality (e,(uQ) is defined by the 
second of equalities (1.5)) 

a= 

F, at point IQ' is of the form 

(3.3) 

-_. 
*)Gol'dshtein R.V.and Zazovskii A.F., Numerical method of solving three-dimensional problems 

of the theory of elasticity for bodies with plane cuts with allowance for contact of their sur- 
faces. MOSCOW, Institute of Problems of Mechanics Akad. Nauk SSSR, Preprint No.192, 1982. 
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(3.4) 

Let now the inequality (3.2) be satisfied, which guarantees that the first term in (3.4) 

is nonnegative. The second term is also nonnegative by virtue of (3.3). The continuity of 
the function g with respect to y is ensured by the presence of the derivative Gy'(r, y), and 
G,’ (s, y) E g(.r, y); the condition g,'(s, y) >O ensurestheconvexitydownwardwithrespectto y of 

the function G(s, y). From this follows the nonnegative character of Vu% of the sum of the 

last terms in the right-hand side of (3.4). Consequently the fulfillment of (3.2) under the 
conditions of the theorem, ensures the inequality AF,(uP) 2 0, i.e. the condition of minimum 

of F, when uI =uro. 
Let on the contrary it be known that for uzo the minimum of F?(u,) obtains. Suppose that 

with this for some UT* an inequality inverse to (3.2) is fulfilled. Let us consider UT = 

UrO + h(b* - UC), h > 0. The first term in (3.4) which coincides with the left-hand part of 
(3.2) is proportional to rZ the second is proportional to 19, and the remaining group of terms 
in (3.4) is a(h) by virtue of differentiability of the function G(p, Iur (),with respect to 

1 UT I. In this way the sign ofAF,is determined by terms linear in h, and the nonfulfillment of 
(3.2) leads to the violation of the condition of minimum when uz = up. The equivlance of (3.1) 
and (3.2) is established. 

We shall now show the equivalence of the solution of variational inequality to the solu- 
tion of the input boundary value problem. Let initially conditions (l-7), (1.8) be satisfied 
for the function up. Then the left-hand side of inequality (3.2) assumes the form 

Outside the region of contact the integrand of (3.5) is zero by virtue of condition (1.8) 
and identity P’O, while in the region of contact this expression is nonnegative by virtue 
of conditions (1.7). Thus for the function uro which satisfies conditions (1.7) and (1.8) the 
variational inequality (3.2) is satisfied. 

Let now the inequality (3.2) be satisfied. We introduce for the function up the bound- 
ary conditions (1.7) and (1.8). We reduce (3.2) to the form 

K (14. uI0) aK(u,", UP) (3.6) 

It was shown in /13/ that for any ~EH~,P(Q), n >O E H+,(Q) the representation 

S nImIdxdy= 
s-l ,_,$L.,&udxdyl 

is valid. It is now possible to bring (3.6) to the form 

(3.7) 

The functional K(uT, ur) is linear with respect to u T and is specified throughoutthe space 
HVP (Q). The inequality (3.7) indicates its boundedness from below, which is only pessible 
when 

IBI=O, laI<p((f+g) (3.8) 

Let us consider again the variational inequality (3.61, and set in it 1~s 1~0. We then 
have 

S [au,“+p(f+~~lu~oII~x~Y~o (3.9) 

which with (3.8) taken into acco$t is only possible when the integrand in expression (3.9) 
is zero. 

The combination of this condition with (3.8) is equivalent to the input boundary condi- 
tions (1.7) and (1.8). The Theorem 3.1. is proved. 
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The Theorems 2.1 and 3.1 enable us to reduce the investigations of existence and unique- 
ness of solution of boundary value problems 11,6), (1.71, and (1.8) to the determination of 
conditions of existence and uniqueness of the minimum of functionals F, and F,. The func- 
tions which minimize F, and F, must belong to those classes in which the equivalence of the 
boundary value and variational problems was established. 

For the presence of a unique minimum in HZ~p(D)of functionals F, and F, it is sufficient 
that their continuity, strict convexity, the convexity of the set of admissible functions and, 
also, the conditions 

are satisfied /13/. 

Theorem 3.2. If 
HI/P (W. 

!r~ - Urof E l+,(Sa), then 

Theorem 3.3. Let all conditions of Theorem 3.1 of the equivalence of the boundaryvalue 
and the variatianal problems of determining u, be satisfied. Let moreover f(P) 20 and S(P. 
1 U, 1) be a bounded function. Then the functional F, has a unique minimum IX,= H,,;(Q). 

the functional F, has a unique minimum uf E 

The Proof of these theorems is reduced to the verification of properties of functiona& 
F1 and F, indicated above. They are accomplished, since F, is the sum of bounaed coercivity 
quadratic and bounded linear functionals, and functional F, can be represented in the form of 
such sum with the addition of a continuous convex functional, The continuity of respective 
functionals is based on the boundedness of operators a,(w) and oX(uT), as operators from 

Ht,P (E*) into Ii+,( The coercivity of quadratic part of F was establishedin/14/,while 
for F, it is proved similarly. 

4. Qualitative behavior of the solution and of its integral characteris- 
tics. In the analysis of problems considered here, by virtue of independent determinationin 
them of normal components of unknown functions, we can make use of some results obtained in 
/2/ for the problem of a cut with partly contacting surfaces without friction. 

Thus the statement that if along a certain part rI of the cut, the boundary r of the re- 
gion of the cut B is widened, with the external normal loads - rZ - cZO not diminished, then 
the region of contact will not be narrowed, and of stress intensity factor Kr along the 
remaining part of the contour I'\ rI is not diminished. 

Let us establish a number of new properties of integral characteristics of the solution. 

4.1. Let us consider the energy characteristics of the solution which depend on dis- 
placements and stresses at the cut surfaces. We limit the case to the consideration of the 
dependence of the friction coefficient on pressure (gfo). The sum of quadratic parts of F, 
and F, 

represent the elastic energy of the deformed volume with a cut. The sum of linear parts of 

F, and F, 

-AA~[(~,“-~r,)w+(o,“-r~~url~~~~ 
n 

represent the work of external forces with reverse sign. The nonquadratic part of F, is the 
work of friction forces of the cut surface taken with the reverse sign 

For the introduced energy characteristics the following theorem is valid. 

Theorem 4.1. Let the friction coefficient f(p) vary proportionally to the parameter 

y >o. Then the elastic energyw and the sum of work of external forces and frictionforces 
L +A is a monotonically decreasing function p (the friction coefficient for Coulomb law of 

friction). 

Proof. First we consider the behavior of the function W(Y). Owing to the splitting of 

the input prdblem into two, it is sufficient to establish the decrease of the function 

w*(y)=W(Wro)-_ 
s 
+-.a% CuJ u,dz & 

n 
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This property of 
of the quadratic part 

air* follows directly from the more general conclusiononthedecrease 
of the functional fl5/ 

--M(U)] 

as a function of the parameter y. In /15/ U is the Hilbert space, a&u) is a bilinear con- 
tinuous symmetric form that satisfies the condition o(u,~)~>~I(ulP,M(u) is a continuous linear 
functional, and j(u) is a convex continuous functional that satisfies condition j(ta)= \tlj (u). 

The functional F, (u,) and Hz,," (0) under conditions of Theorem 3.1 (for g=O) satisfies 

all requirements stated in /15/ for the functional I(U). Thus it is possible to maintain that 
the decrease of W+(y), and with it that of W(y)is monotonic. 

For functions ZD and us that minimize P, and F* and hence satisfy the boundary conditions, 
the following equality is satisfied: 

Thus from the decrease of w(y) follows the decrease of r.(y)-+_4 (-,Q. 

4.2. Let us now consider other integral characteristics of the solution whicharedefined 
by the displacement field of w and up We introduce the quantities 

v:j=j ,&,j dz &, v;j (v,‘j, v,‘i) = 5 u&j dx dy 
P n 

which represent the "moments of distribution" of displacements of the cut surface. Thus, for 
example, -2V,eJ represents the volume of the gap bounded by the deformed surfacesofthe cut. 
The quantities V,‘j, VT*" define the elastic field created by the crack at considerable dist- 
ances from it /16/. Let the external loads be defined by polynomials of the form 

(4.1) 

Theorem 4.2. Each of the quantities VG x(vXr) is a monotonically increasing function of 
the coefficient ~~IIXZ, (for constant coefficients with other i,j in expansions (4.1)). 

Proof. Let w (f&, U, (jr?), uT &I), U, (j,l, be the solutions of variational problems (2.1) and 
(3.l)for loads which satisfy two sets of coefficients K,,u and Ku*], also %zV 
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w (E*) = 0; w (E*) < 0, u, (w W*)) = rr - crzo (3.4‘ 

As seen from the solution of the input problem (1.6) , the w(E) belongs to the set w (E*) 
and is distinguished by that the additional inequality in (1.1) is satisfied in it for O,(ZP) 
inside E. We shall show that in the solution of problem (1.6) the maximum value of 
linear combination of Vz’j is realized. 

some 

Theorem 4.3. The input problem (1.6) is uniquely characterized by the condition 

(4.5) 

Proof. Functions w(E+) are admissible for the variational problem (2,1), hence 

P, (m (0 a Fz (w G*))‘ v=* (S') 

But with (2.1) and (4.1) taken into account, we have 

F,@(W) = 5 f+ Gz (to (E’)) w(E*) - rp (E’) + csz% (E’f dzdg = 
0 3 

s .v 

- +-(I’,+ 5,“)~ (E*)d&= - $ z: K:jv,‘j cw (E*)) 

P 0 

Similarly 
.s 

F (W (E)) = - z K,‘jVLij (w (E)) 

Consequently, for the solution of the input problem condition (4.5) is satisfied. If, 
however, now condition (4.5) is satisfied for W(P), then it cannot be satisfied for other 
w(E) , since owing to the strict convexity, the functional cannot have the same values on 
various functions. 

4.3. The solution of the problem considered here, as was shown above, is uniquely deter- 
mined by the external load (by coefficients K.ij,&ij in expansions (4.1)). Then, also, the 
moments of solution of any order, in particular higher than N are uniquely determined. We may 
change the initial statement, and specify some set of moments of solution,when the respective 
loading and distribution of displacements are determined unambigously. The exact formulation 
of this feature is provided by the following theorem. 

Theorem 4.4. Specifying the moments Vzij, i -j-j = 0,. ..,N uniquely determines the co- 
efficients K,ij, i + j = 0, . . . . N in the expansion of loading and the solution of variational 
problem (2.1) (if it exists for these values of VJj ). Specifying moments V:‘, i + i =O,. . -7 

N uniquely determines the coefficients K:', i + j = 0, . . ..N in expansion (4.1) and the 
solution of variational problem (3.1) (if it exists for these values). 

Proof. Suppose that v,,ii = v,,ij, vi, j; ~gi+jq~ and that then functions fzl. w (fL1) and fP. 
Wz') are different. 

The functional F, is strictly convex, hence its increments in the left-hand side of in- 
equality (4.2) are strictly positive. Thus the assumption about the difference of w W) and 

w (/z? contradicts the equality of moments V,,ijV,,ti. Consequently the set of quantities v,'j 

uniquely determines the solution of (2.1) for w. The proof of uniqueness of determinationof 

% is similarly proved by the set of vectors V,ii. 

Remarks. lo, For the existence of solution of the problem for given moments of dis- 
placement distribution it is necessary that the additional constraints imposed in that case 
were compatible with input constraints in the form of inequalities. 

20. Solution of the variational problem (2.1), (3.1), as shown by the Theorem 4.4, have 
a definite syssaetry with respect to the set of constants Vl’j,K2iP’,ij&‘*)- The part of the 

functional F,(P,) linear in w(+is a bilinear symmetric form with respect to constants Vz;" and 
K,Q (v,Q, KTii). If problem (2.1), (3.1) is considered with additional constraints, determined 

by specifying the moments of solution, then the constants K,'f(ef) coincides with the Lagrange 

multipliers corresponding to these constraints. 
Let us demonstrate this in the case of problem (2.1), when the contact region is absent. 

Let there be the variational problem 
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(where the constants K'i are UnkIIOWn) with COnditiOns 

s, wz”yjdxda, = V ‘j z1 o,<i-l-i<N 

Introducing the Lagrange multipliers au and varying in the Lagrange functional the func- 

tion ut , taking into account the absence of contact region, for the solution of problem in W. 
we obtain 

i.e. ~'i = a"j. 
A similar symmetry exists in pxoblems on stresses, for example, in the problem of contact 

of two elastic bodies /17/. In them the sets of quantities V$, and K,+ (YTij and K,*j) change 

places. Here Vi* are the coefficients specified in the input problem, and Kijare moments of 
the sought stress distribution. 

30. The Theorems 4.2 -4.4 are valid not only for polynomial form of external loads, 
but also for their expansion in any system of functions belonging to H+, (9). 
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